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Abstract. In this paper, we are investigating an optimal solution of a typical Travelling Salesman Problem (TSP).

Indeed, the results of the TSP consist of costs and complexity of time and space. In fact, many researchers have

been working on solving the TSP and trying to reduce the complexity of this problem for the purpose of reaching

an optimal solution efficiently. Therefore, we are going to structure a hybrid algorithm that consists of the Ant

Colony Optimization method (ACO) combined with the Neighbour Joining method (NJ) and call it a Neighbour-

joining Ant Colony Optimization method (NACO) to get accurate and efficient results. In addition, a variety of

benchmarks from real-life problems will be taken as instances and implemented in our hybrid model using the

MATLABr platform in order to examine how our proposed method compares with the standard ACO method.
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1 Introduction

The travelling salesman problem (TSP) is one of the very important problems in the field of
computational and applied mathematics regarding its applications in the real-life problems. In
addition, it was classified as one of the most complicated problems because it falls within the
complexity class of the NP-complete Du & Ko (2011). The complexity of this problem has been
inspiring many researchers to find and modify new ways to reduce the complexity of this problem
and trying to reach an optimal solution efficiently. Indeed, there are many algorithms have
been used to solve this problem such as Particle Swarm Optimization (PSO) Shi et al. (2007),
Genetic Algorithm (GA) Razali & Geraghty (2011), Monarch Butterfly Optimization (MBO)
Wang et al. (2016), However, some of these algorithms were able to give an exact solution, while
some others were able to give an approximate solution.

Basically, the TSP as shown in Fig. 1 can be defined and explained as there are number of
cities that the seller is required to visit in a shortest possible way in order to reduce the cost
of the trip and then return to the city from which he started. The importance of this problem
is well brought out in many fields and applications in the real-life such as in the manufacture
of electrical appliances circuits, the construction of roads between cities, aircraft guidance and
drones, DNA computing, and many other applications. Moreover, TSP can be linked to many
field in computer science and mathematics such as Eiegenproblems Ali (2017), Neural Networks
Yamada et al. (1993), Projective Geometry Yassen et al. (2019).
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Figure 1: TSP Example

The TSP can be classified into three types such as symmetric TSP, asymmetric TSP, and
dynamic TSP. As we mentioned earlier, in the computational complexity theory, this problem
has been classified as an NP-complete problem, which means if there are n cities in a complete
graph then there are (n-1)! Possible different tours for the seller. If n is a large number, then the
classical method takes a huge amount of time to find the optimal solution. Therefore, researchers
in the field of artificial intelligence always seek to find new ways to solve this problem and try
to reduce its complexity. Scientists have simulated the behaviour of many living creatures that
have less intelligence than human beings such as ants, bees, birds, and many other animals
that live in swarms Farisi et al. (2016). This simulation helped the researchers to solve many
complicated problems, including the travelling salesman problem.

The rest of this paper consists of the following sections. In Section 2, hybrid methods of
ACO and other related work have been mentioned. In Section 3, we are going to mention the
methods and techniques of the TSP, ACO, NJ and our proposed method NACO. Finally, we
are going to apply and implement our proposed algorithm and see how it compares with the
standard ACO in the experiments and the results analysis in Section 4.

2 Related Work

Regarding the studies that are conducted on the algorithm of the ant colony and its uses in
solving the travelling salesman problem, Gong & Ruan (2004) introduced a hybrid algorithm
consisting of an ant colony algorithm and a genetic algorithm, and they concluded that their al-
gorithm increases the accuracy of the solution as well as reduces the travelling salesman problem
search space.

In Duan & Yu (2007) combined the ant colony algorithm with the Metric Algorithm (MA),
which was used to improve the selection of parameters in the ant colony algorithm, and they
concluded that this method is more efficient and accurate.

A new method was presented in Chen & Chien (2011) which was called the genetic simulated
annealing ant colony system with particle swarm optimization techniques. They concluded that
their proposed algorithm has better solutions after comparing it with many algorithms.

Junqiang & Aijia (2012), were able to combine the ant colony algorithm and the delete-cross
method to conclude that the resulting algorithm is better than six types of the original ant
colony algorithm.

Girsang et al. (2014) introduced a new method deriving from hybridization the Bee Colony
Algorithm BCO with the ant colony algorithm ACO, and they called it Ant Bee Colony Opti-
mization (HABCO), and they concluded that their new algorithm resulting from the hybridiza-
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tion overcame the ACO and the BCO in reaching the solution of travelling salesman problem.

A hybrid of Cuckoo Search algorithm and Ant Colony algorithm was proposed by Kumar & Tiwari
(2015), and they compared it with the original ant colony algorithm and they found that the
hybrid algorithm is more efficient than the original ant colony algorithm in solving the problem.

Mahi et al. (2015) found a new method consisting of using 3-Opt algorithms, Particle Swarm
Optimization (PSO), and ant colony optimization. Their results show that the new method is
better than many methods in terms of the performance by using less number of ants cities.

In Farisi et al. (2016) modified the ant colony algorithm ACO by combining it with the
Firefly Algorithm (FA), and compared their results with the original ACO and FA. They found
that the new method gets closer to the solution efficiently in a short time.

Gülcü et al. (2016) proposed a parallel hybrid algorithm by combining 3-Opt algorithm and
ant colony optimization ACO, and they called it PACO-3Opt. They compared the results with
PSO-ACO-Opt, and concluded that PACO-3Opt has higher efficiency in reaching the solution
because it works in parallel, which reduces the time that is spent on mathematical calculations
within the algorithm.

An improvement on ACO by updating the pheromone from the results of 2-Opt has been
done by Ratanavilisagul & Pasaya (2018). The proposed method is called Modified Ant Colony
Optimization with updating Pheromone by Leader and Reinitialization (MACO-LR). From the
experiments in their paper on many instance of TSP, they found that the proposed algorithm
overcomes ACO, ACO-2OPT, and PACO-3OPT in terms of the accuracy of the solutions.

A new hybrid algorithm has been proposed by Rokbani et al. (2019). They combine ACO
with Gravitational Particle Swarm Optimization (PSOGSA), and called it Gravitational Par-
ticle Swarm Optimization with a Local Search (PSOGSA-ACO-LS). They concluded that the
proposed algorithm is very close to the optimal solution of the standard TSP instances and also
it has a great ability to solve problems that contain more than 100 cities.

Sahana (2019) modelled a new hybrid algorithm consisting of genetic algorithm, heuristics
like remove-sharp, and local-opt with Ant Colony System (ACS). They concluded that the
proposed method can reach the solution efficiently and requires fewer iterations compared to
the standard ACS and hybrid GA. Also, it was competing with the exact algorithms if the
number of cities is small as well as it outperforms many of the heuristic algorithms in instances
with large cities.

We conclude from the mentioned studies above that hybridization of the ant colony algorithm
ACO with other suggested algorithms mostly gives better results comparing with the standard
ACO. However, most of the algorithms in the related work above have a lack in terms of
the algorithm speed and the calculating performance. For this reason, we put our attention
intensively in studying the complexity of time issue and tried to reduce it in order to obtain
better results efficiently.

3 Methods and Techniques

3.1 Mathematical Model of a TSP

In graph theory, the problem is represented by a graph consisting of a number of nodes that
represent the cities and these nodes are connected to each other by lines. Each line can be
represented as the transportation between any two cities. The primary goal is to find a path
that passes through all the cities with the lowest possible cost Jünger et al. (1995).

If G = (V,E) is a weighted complete graph where V is the set of nodes such that |V | = n
and E is the set of edges. Each node in the graph is connected with n−1 edges. M is n×n cost
or distance matrix. H is the set of the all possible Hamiltonian cycles in G which is represent
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the seller tour. The mathematical formulation of the TSP is given as:

min (h) =
n∑

i=1

n∑
j=1

mijLij ,

where i, j ∈ V q ∈ Q, mij = mji = 0 if i = j, L is the decision variable, and h ∈ H

n∑
i=1

Lij = 1 j = 1, . . . , k

k∑
j=1

Lij = 1 i = 1, . . . , n

otherwise Lij = 0 that mean Lij is equal to 1 if the seller is travelling from the city i to the city
j and Lij is equal to 0 if the seller is travelling from the city i to another city that is not j.

3.2 Ant Colony Optimization (ACO)

Dorigo et al. (1998) introduced the algorithm of the ant colony. It is one of the heuristic algo-
rithms that is derived from the natural behaviour of ants in the nature based on analysing the
real ants thinking about finding and storing food in the colony. This algorithm has been tested
in large optimization problems and it has been shown that this algorithm has a great ability to
reach the optimal solution.

ACO depends on the behaviour of ant swarms, measure the reactions of these individuals in
the past, and collecting new information and then building new possibilities in order to improve
the solution in each iteration. Each ants in the colony communicates with the other ants using
chemicals that are called pheromones. The transmission of ants is initially random, but after a
while, the amount of pheromones will increase in the path that the ants will prefer, which will
make most of the ants walk in this way.

Whenever this path is short, it will accelerate the process of returning the ants to the colony.
The path that takes less time in returning is going to have large amount of pheromones. Since
the pheromone is an evaporation substance, the probability of ants going to paths chosen by a
few ants will be less likely. Therefore, the path that contains a large amount of pheromone will
represent the optimal path.

3.2.1 Ant Colony on TSP

In ant colony algorithm, there is a set of solutions equal to the number of ants m in each
iteration t. These solutions are based on information collected by pheromones (ζ) in each
path. It is important to mention that there are two important concepts of ACO in TSP which
determine the optimal solution among the set of solutions that are obtained in each iteration.
These concepts can be explained as follows:

The Concept of Transition When the time t = 0, the ants are randomly placed on the
cities, and all the directions will have the same amount of pheromones. In this case, the initial
state of the pheromone can be described as ζ0 = c, where cϵR. In the next step, each ant will
move to the next unvisited city depending on the transport rules that are followed by ants which
can be described as below Gao (2020):

1. Pheromone density (ζij) on each path from the city i to the city j and this data is inferred
from the algorithm.
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2. The heuristic information (ηij) between every two cities can be calculated by ηij = 1
dij

,

where dij is the distance between the current city i and the next city j.

By using these rules, the probability (P k
ij) of k

th ant to move to the next city will be generated,
and this probability is calculated in the following way:

P k
ij(t) =

{
(ζij(t))

α(ηij)
β∑

(ζij(t))
α(ηij)

β , if j is not visited city

0, otherwise

}
,

where i is the current city, j is the next city, t is the iteration number, and α, β are parameters
used to determine the importance of the relation between pheromones and distance. The ant
will move to the next city by comparing the probability on each path and choosing the path
with the highest probability.

The Concept of Pheromone Updating In order to improve the solution, the pheromone
must be updated in every iteration, and the formula of pheromone updating of the next city
(t+ 1) is given as

ζij (t+ 1) = (1− ρ) ζij (t) +
m∑
k=1

△ζkij(t, t+ 1),

where ρ is pheromone evaporation coefficient (0 < ρ = 1) , △ζkij(t, t + 1) is the amount of
pheromone left by an ant in each iteration which is given by the following formula

△ζkij (t, t+ 1) =

{ Q
Lk if (i, j) ∈ ψk

0 otherwise

}
,

where Q is a fixed value that determines the amount of pheromone increment in each step, Lk

is the length of the path ψk that the ant k visited Deng et al. (2019).

3.3 Neighbour Joining Method (NJ)

This method was first demonstrated by Naruya Saitou and Nei Saitou & Nei (1987), then it got
developed in several researches later. This method can be described as if we have a matrix of
distances calculated from a set of nodes, then a tree consisting of leaves and branches can be
formed depending on these distances Al-Neama et al. (2014). Therefore, this method is one of
the most important ways to form a phylogenetic tree, such as the formation of DNA trees and
protein sequences. The idea of this method can be presented as the following steps:

1. If D is a distant matrix of n species S where (s1, s2, . . . , sn ∈ S).

2. Calculate Usi =
∑

sk ̸=si

Dsi,sk
(n−2) for all species si ∈ S, i = 1, 2, , , , n.

3. Select si, sj which have the minimum values calculated from Dsi,sj − Usi − Usj .

4. Join the nodes si, sj in a new node sij and compute the branch length from sij and nodes
si, sj by dsi,sij =

1
2Dsi,sj +

1
2(Usi − Usj ), dsj ,sij =

1
2Dsi,sj +

1
2(Usj − Usi).

5. Delete the si, sj from D, and replace them by sij .

6. Update D by computing the distance between sij and other remaining species.

7. Redo the previous steps until formatting a complete tree.

Applying these steps on any distant matrix will lead to forming a complete tree, and that
all species will be represented as leaves tied to branches.
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3.4 Neighbour Joining Ant Colony Optimization (NACO)

Using hybridization among several algorithms usually leads to better results. However, this does
not mean that hybrid algorithms do not fall into bad solutions. In our proposed algorithm that
is resulted from the hybridization of the ant colony optimization ACO and Neighbour Joining
method NJ (we briefly called the new algorithm NACO), we took an intensive attention to all of
the criteria that might affect the solution and applied it to the travelling salesman problem TSP.
We got many improvements in the solutions by comparing them with the original algorithm of
the ant colony especially in reducing calculations as well as time.

In fact, our main concern of our proposed method (NACO) was to reduce the complexity of
the space, and we leaned on selecting the NJ method in our hybridization because using the NJ
algorithm will link all the cities in any TSP and create a complete tree as shown in Fig.2. This
processing can be done by the calculations mentioned in (3.3).

Figure 2: NJ tree of 42 cities in dantig42.

One of the advantages that the NJ method has in building trees, is building a reverse tree
that starts from the leaves and ends in roots. This advantage made us able to create a matrix
that it consists of the first stage of the joined leaves by connecting every two cities individually
before connecting them to a third city. We called this matrix (LEAF1). This idea was applied
to the TSP instance (dantig42), and we got the results that are shown below in Fig.2

From Fig.2, we can see that every two leaves are connected to a red dot which represents a
connection of two cities in a TSP. Therefore, we conclude that the first stage of the joined leaves
matrix can be revealed as:

LEAF1 =



14 15
18 19
1 42
22 23
11 12
28 29
36 37
32 33
3 4
8 9


The explanation of the data in matrix LEAF1 can be described as that the cities in the first
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column 14, 18, 1, 22, 11, 28, 36, 32, 3, 8 are linked to the cities in the second column 15, 19,
42, 23, 12, 29, 37, 33, 4, 9 respectively. After applying the information of the matrix LEAF1 in
dantig42, we got the results that are shown below in the Fig. 3.

Figure 3: Applying LEAF1 matrix in dantig42.

From Fig. 3, it is clear that the 42 nodes in the graph have been reduced to 22 nodes and
10 edges. Now, by using mentioned procedure of ACO in (3.2), the seller will start selecting a
city randomly to start his tour, then he will start moving from a city to another. Now, when
the seller reaches any city within the matrix LEAF1, he will directly move to the city that is
placed in the same row and the different column in the matrix LEAF1 without doing any extra
calculations.

On the other hand, if the city is not listed in matrix LEAF1, the seller will carry on the
usual way of the ant colony algorithm until he completes his tour and returns to the city from
which he started. The main goal that we got here is the complexity was reduced by assuming
that each two cities are linked together represent just one city. Therefore, moving to the city 14
in column 1 or the city 15 in column 2 have the same meaning. This procedure can be applied
to the rest of the cities that are linked together in the matrix LEAF1.The entire processing of
our proposed algorithm is shown in Algorithm (1).

Algorithm 1: NACO Algorithm

Input: cities number, ants number, iteration and ACO parameters ρ, α, β, ζ0, Q
Output: Min of (local solution)

1 Compute distance matrix
2 Compute LEAF1 matrix using NJ algorithm
3 for t← 1 to iteration do
4 for m← 1 to ants number do
5 for n← 2 to cities number do
6 if i ∈ LEAF1matrix then
7 go to j
8 else
9 compute P and chose j

10 store the tour h and compute the cost (h)

11 localsolution←Min(cost(h))

12 store local solution
13 update pheromone matrix

14 globalsolution←Min(localsolution)
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4 Experiments and Results

4.1 Experimental Environment

The below implementations of all the experiments have been done using the following information
(Devises and Software):

1. HP Laptop with 8GB of RAM and Intel core i7-8565U CPU with 8 cores.

2. 64-bit Windows operating system.

3. MATLABr R2017a (Version 9.2).

Our proposed algorithm (NACO), was tested on many instances of TSP. In addition, we
compared the results we got with the original ant colony algorithm method. The instances that
we used in our experiments can be found in the following website: (http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsp/).

All the parameters of the ACO method and the hybrid ant colony algorithm NACO that are
shown in Table 1, were taken from the range of the standard parameters without any changes
Li & Zhu (2016).

Table 1: Parameters set-up

Parameter name and symbol Value

Density of pheromones Q 100

the coefficient of Pheromone evaporation ρ 0.1

Data gathering factor α 1

Indicative prediction factor β 5

Number of iterations i 200

Number of ants k Equal to the number of cities n

The initial pheromone value ζ0 was chosen using the following equation

ζ0 =
10×Q

n×mean(M)
.

We performed several experiments and then we selected the top 20 implementations for both
algorithms individually. The instances that we used in the experiments are: (dantzig42, att48,
eil51, eil76, eil101, pr107, bier127, krob200, rl1889, d2103, rl5915, rl11849).

4.2 Results and Analysis

The information below in the Table 2 have been arranged as the following:

1. Instances: dantzig42, att48, eil51, eil76, eil101, pr107, bier127, krob200.

2. Algorithm: ACO and NACO.

3. Optimal solution: which represents the best cost that is taken from the TSPLIB.

4. n: represents the number of cities in each instance.
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5. Worst: represents the worst result of the two algorithms.

6. Best: represents the best result of the two algorithms.

7. Average: represents the average solution of the 20 independent implementations.

8. Dbest: denotes to the percentage deviation of the best solution.

9. Davg: denotes to the percentage average of the best solution.

Dbes and Davg can be calculated respectively as follows:

Dbest(%) =
optimal solution− best solution

optimal solution
× 100,

Davg(%) =
optimal solution− average solution

optimal solution
× 10.

For ACO and NACO optimization algorithms, the experiments show that NACO can obtain
the best optimization values in all of the taken TSP instances. For example, in eil51, NACO has
obtained 439.5788, where the optimal solution is 426. Also, in att48, NACO reached 34286.56,
which is very closed to the optimal solution 33522.

Table 2: The experiment and result

Instances Algorithm Optimal
solution

n Worst Best Average Dbest Davg

att48
NACO

33522 48
34945.7 34286.56 34652.05 2.28 3.37

ACO 35413.11 34587.47 35128.09 3.17 4.79

eil51
NACO

426 51
441.8957 439.5788 440.5195 3.18 3.4

ACO 452.4181 441.2533 446.8659 3.5 4.89

eil76
NACO

538 76
568.0236 557.0516 565.9005 3.54 5.18

ACO 575.1985 562.0776 570.0606 4.47 5.95

eil101
NACO

629 101
690.2071 679.8785 686.2631 8.08 9.1

ACO 692.9806 681.1936 694.0937 8.29 10.34

pr107
NACO

44303 107
46111.2 45896.98 46017.12 3.59 3.86

ACO 46520.64 45974.25 46267.55 3.77 4.43

bier127
NACO

118282 127
122732 121728.3 122444.8 2.91 3.51

ACO 124497.47 123159.04 123899.75 4.12 4.74

krob200
NACO

29437 200
32370.94 31794.16 32203.08 8 9.39

ACO 32744.096 32078.586 32365.203 8.97 9.94

It is clear that the proposed algorithm NACO has greatly improved the time of the imple-
mentation. In addition, the acceleration towards the solution was much better than the original
algorithm ACO as shown in Table 3. This table contains the instances, the time which is
taken by the algorithms (ACO and NACO) in each instances, the difference in times, and time
improvement percentage which represents the improvement at the time of the implementation
which was calculated as the following way:

Time improvement percentage(%) =
ACO time−NACO time

ACO time
× 100
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Table 3: The times improvement in experiments

instances NACO ACO ACO-NACO Time improvement percentage

dantzig42 7.59375 7.91875 0.325 4.104

att48 10.44531 11.06641 0.6211 5.612

eil51 11.55859 12.26641 0.70782 5.77

eil76 29.09375 38.65313 9.559383 24.731

eil101 57.07891 60.6523 3.57339 5.891

pr107 66.37266 72.46563 6.09297 8.408

bier127 95.14063 102.623 7.48237 7.291

krob200 279.6586 319.684 40.0254 12.52

It is worth to mention that relying on the linked cities in LEAF1 has clearly improved
the results. The linked cities were identical to the optimal tour for most of the instances. As a
result, there was an improvement in the time which was due to the reduction in the mathematical
calculations within the algorithm. That is because, the number of times of calling the function
rouletteSelection in MATLAB that is responsible for the seller moving from a city i to a city
j in has decreased. Table 4 shows the details of the number of times that MATLAB recalls the
function rouletteSelection in both algorithms NACO and ACO respectively.

Table 4: The rouletteSelection function recalling in MATLAB

Instances NACO ACO

att48 364800 451200

eil51 387600 510000

eil76 927200 1140000

eil101 1717000 2020000

pr107 1883200 2268400

bier127 2565400 3200400

krob200 6080000 7960000

The linked cities from the beginning of implementation are shown in Table 5.

Table 5: The linked cities

instances Number of cities Number of linked cities

att48 48 9

eil51 51 12

eil76 76 14

eil101 101 15

pr107 107 18

bier127 127 25

krob200 200 47

The relation between the number of the linked cities and the reduction in rouletteSelection
function calling within the algorithm, and it is illustrated in percentage for each instance, as
shown in Fig. 4.
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Figure 4: The relationship between the linked cities and reduction in the calculations

4.3 New Results

In the instance (dantzig42), the results of the two algorithms can be shown in Table (6). It is
clear that NACO has recorded new results, where, the tour length that is recorded in TSPLIB
for dantzig42 was (699), but the best tour in NACO was (684.9386). Also, the average of 20
runs was smaller than (699). Now, the time that is taken for NACO was less than ACO by 0.325
seconds, and this is a significant improvement in time and cost.

Moreover, the complexity of the space within the algorithm has been also reduced, because
the recalling of rouletteSelection function has been decreased significantly by 24.39% as shown
in the Table (7).

The convergence towards a solution in NACO is much faster than ACO, as shown in Fig.
(5).

Figure 5: Solution convergence
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Table 6: Result of 20 implementations on dantzig42 using ACO and NACO

dantzig42

NACO ACO

No. it No. Cities Best Cost Time(s) No. it No. Cities Best Cost Time(s)

200 42 684.9386 7.71875 200 42 704.8635 8.03125

200 42 687.8036 7.25 200 42 714.442 8.078125

200 42 692.3374 7.640625 200 42 716.0602 7.984375

200 42 692.7099 7.515625 200 42 716.1693 7.515625

200 42 693.2885 7.34375 200 42 718.404 7.90625

200 42 694.0555 7.828125 200 42 719.7429 7.671875

200 42 695.3411 7.609375 200 42 719.7945 8.0625

200 42 696.87 7.6875 200 42 721.4636 7.984375

200 42 697.7633 7.875 200 42 725.8268 8.015625

200 42 697.8502 7.09375 200 42 725.9792 8.109375

200 42 697.8502 7.421875 200 42 728.3959 7.859375

200 42 697.8502 7.859375 200 42 728.7708 8.0625

200 42 698.566 7.703125 200 42 729.0138 7.875

200 42 699.1626 7.703125 200 42 732.0614 7.625

200 42 699.6677 7.734375 200 42 732.1105 8.015625

200 42 700.909 7.765625 200 42 732.4635 7.984375

200 42 700.9959 7.765625 200 42 734.8429 8.078125

200 42 701.1678 7.625 200 42 735.8168 7.484375

200 42 701.6084 7.625 200 42 736.2496 7.921875

200 42 702.0231 7.109375 200 42 739.4587 8.109375

Average 696.63795 7.59375 Average 725.5964 7.91875

Table 7: The rouletteSelection function recalling in Matlab of dantzig42 instances

Algorithm No. of recalling the function

ACO 260400

NACO 344400

Fig. 5 shows comparing with ACO, NACO needs a few iterations to reach the best solutions.
In other words, it can converge towards a solution faster than ACO. Moreover, NACO was able
to eliminate any intersection of edges that might appear in the graph, and that it is certainly
the intersection of any two edges will lead to increase the cost of the tour as shown in the Fig.
6, where the ACO with the intersection on the left side, and the NACO on the right side.

4.4 Big Sample Instances

To make sure of the work of our proposed algorithm properly, NACO was applied to instances
that have more than 10000 cities and was also compared with ACO. It is worth to mention that
we made a significant improvement as follows.

In instance (rl1889), the number of cities are 1889 and the number of the joined cities in
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Figure 6: Intersection of edges eliminate by NACO.

NACO are 307. Now, after applied ACO and NACO 100 iterations and 100 ants, we got this
results that are shown here in Table 8.

Table 8: Time, best cost, and RouletteSelection recalls in MATLAB of (rl1889)

rl1889 ACO NACO

Best cost 382804.487 380153.822

Time (s) 6223.398 5279.90156

RouletteSelection recalls in MATLAB 145810000 18870000

In the instaces (d2103, rl5915, and rl11849) that contain 2103, 5915, and 11849 cities re-
spectively, ACO and NACO have been applied with 100 iterations and 10 ants. NACO had a
significant advantage of the convergence to the solution as shown in Fig. 7a, Fig.7b, and Fig.
7c.

(a) The convergence of (d2103) (b) The convergence of (rl5915)

(c) The convergence of (rl11849)

Figure 7: The convergence of the big sample instances
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4.5 Complexity Analysis

In the complexity theory, it is known that the Big-O notation of finding different solutions of
the ACO algorithms is equal to O(n3) by assuming the number of ants and cities are the same
Yuan et al. (2009). In NACO, we were able to reduce this complexity to O(n2 (n− ω)), where
w is a positive number represents the number of rows in the matrix LEAF1.

5 Conclusion

To sum up, it is not a necessity to hybrid ACO method with a method that can deal with TSP.
In other words, NACO method was a resultant of the NJ method that was not designed for the
TSP and ACO method. In addition, NACO method has overcome the original ACO method in
most of the instances that we implemented in our paper in terms of time and space complexity.
Moreover, NACO method has shown a significant improvement in the big sample instances when
it compares with the standard ACO method. Finally, the number of calculations within NACO
has been decreased from n3to n2(n − ω) comparing with ACO in terms of the Big-O notation
complexity.
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